Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17334, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651763

RESUMEN

Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.

2.
J Exp Bot ; 74(21): 6522-6540, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37668374

RESUMEN

Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Perfilación de la Expresión Génica
3.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648264

RESUMEN

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Asunto(s)
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protectores Solares , Flavonoles/metabolismo , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol Biochem ; 196: 1084-1097, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36921558

RESUMEN

Ethylene (ETH) plays important roles in various development programs and stress responses in plants. In grapevines, ETH increased dramatically under chilling stress and is known to positively regulate cold tolerance. However, the role of ETH in transcriptional regulation during chilling stress of grapevine leaves is still not clear. To address this gap, targeted hormone profiling and transcriptomic analysis were performed on leaves of Vitis amurensis under chilling stress with and without aminoethoxyvinylglycine (AVG, a inhibitor of ETH synthesis) treatment. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and WRKY transcription factors (TF) were only the two highly enriched TF families that were consistently up-regulated during chilling stress but inhibited by AVG. The comparison of leaf transcriptomes between chilling treatment and chilling with AVG allowed the identification of potential ETH-regulated genes. Potential genes that are positively regulated by ETH are enriched in solute transport, protein biosynthesis, phytohormone action, antioxidant and carbohydrate metabolism. Conversely, genes related to the synthesis and signaling of ETH, indole-3-acetic acid (IAA), abscisic acid (ABA) were up-regulated by chilling treatment but inhibited by AVG. The contents of ETH, ABA and IAA also paralleled with the transcriptome data, which suggests that the response of ABA and IAA during chilling stress may regulate by ETH signaling, and together may belong to an integrated network of hormonal signaling pathways underpinning chilling stress response in grapevine leaves. Together, these findings provide new clues for further studying the complex regulatory mechanism of ETH under low-temperature stress in plants more generally and new opportunities for breeding cold-resilient grapevines.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Etilenos/farmacología , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frío , Hojas de la Planta/metabolismo
5.
Curr Opin Plant Biol ; 73: 102332, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36652780

RESUMEN

Flowering plants have evolved extraordinarily diverse metabolites that underpin the floral visual and olfactory signals enabling plant-pollinator interactions. In some cases, these metabolites also provide unusual rewards that specific pollinators depend on. While some metabolites are shared by most flowering plants, many have evolved in restricted lineages in response to the specific selection pressures encountered within different niches. The latter are designated as specialized metabolites. Recent investigations continue to uncover a growing repertoire of unusual specialized metabolites. Increased accessibility to cutting-edge multi-omics technologies (e.g. genome, transcriptome, proteome, metabolome) is now opening new doors to simultaneously uncover the molecular basis of their synthesis and their evolution across diverse plant lineages. Drawing upon the recent literature, this perspective discusses these aspects and, where known, their ecological and evolutionary relevance. A primer on omics-guided approaches to discover the genetic and biochemical basis of functional specialized metabolites is also provided.


Asunto(s)
Magnoliopsida , Polinización , Polinización/fisiología , Flores/genética , Plantas/genética
6.
Front Plant Sci ; 13: 876843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466234

RESUMEN

Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.

7.
Front Plant Sci ; 13: 976283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275580

RESUMEN

Sexually deceptive plants achieve pollination by enticing specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. The sexually deceptive orchid genus Chiloglottis is comprised of some 30 species with predominantly dull green-red flowers except for the dark insectiform calli/callus structure from the labellum lamina. This unique structure mimics the female of the pollinator and potentially enhances the visibility of the mimic. However, the chemical and genetic basis for the color of these structures remains poorly understood across the genus. The goal of this study was to investigate the flower color biochemistry and patterns of gene expression across the anthocyanin and flavonol glycoside biosynthetic pathway within the calli structures across the three distinct clades of Chiloglottis (Formicifera, Reflexa, and Valida) using chemical and transcriptome analysis. Our phylogenomic analysis confirmed the close sister relationship between the Reflexa/Formicifera clades and reaffirms the basal position of the Valida clade. Additionally, the biochemical basis of the dark calli/callus structures is conserved across the genus. Nonetheless, the proportion of methoxylated anthocyanin and flavonol glycoside derivatives and the mean gene expression levels appear to differentiate the Reflexa and Formicifera clades from the Valida clade. In future studies, it will be of interest to tease apart the role of phylogeny, environment, pollinators, and other factors as potential drivers of the observed biochemistry and gene expression differences. It will also be important to characterize the function of candidate genes such as DFR, LDOX, and FLS in this fascinating case of flower color mimicry.

8.
Front Plant Sci ; 13: 910362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712597

RESUMEN

The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.

9.
Front Plant Sci ; 13: 860997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401591

RESUMEN

Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.

10.
Plant J ; 110(2): 529-547, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092714

RESUMEN

The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estilbenos , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Shikímico , Estilbenos/metabolismo
11.
Mol Ecol Resour ; 21(4): 1118-1140, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33453072

RESUMEN

With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.


Asunto(s)
Evolución Biológica , Orchidaceae , Filogenia , Filogeografía , Orchidaceae/clasificación , Orchidaceae/genética , Análisis de Secuencia de ADN
12.
Sci Rep ; 10(1): 17331, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060668

RESUMEN

Chlorella can produce an unusually wide range of metabolites under various nutrient availability, carbon source, and light availability. Glucose, an essential molecule for the growth of microorganisms, also contributes significantly to the metabolism of various metabolic compounds produced by Chlorella. In addition, manipulation of light intensity also induces the formation of secondary metabolites such as pigments, and carotenoids in Chlorella. This study will focus on the effect of glucose addition, and moderate light on the regulation of carotenoid, lipid, starch, and other key metabolic pathways in Chlorella sorokiniana. To gain knowledge about this, we performed transcriptome profiling on C. sorokiniana strain NIES-2168 in response to moderate light stress supplemented with glucose under mixotrophic conditions. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length was obtained from both normal, and mixotrophic samples of C. sorokiniana. After pre-processing, 93.63% high-quality PE reads were obtained, and 18,310 predicted full-length transcripts were assembled. Differential gene expression showed that a total of 937, and 1124 genes were upregulated, and downregulated in mixotrophic samples, respectively. Transcriptome analysis revealed that the mixotrophic condition caused upregulation of genes involved in carotenoids production (specifically lutein biosynthesis), fatty acid biosynthesis, TAG accumulation, and the majority of the carbon fixation pathways. Conversely, starch biosynthesis, sucrose biosynthesis, and isoprenoid biosynthesis were downregulated. Novel insights into the pathways that link the enhanced production of valuable metabolites (such as carotenoids in C. sorokiniana) grown under mixotrophic conditions is presented.


Asunto(s)
Chlorella/genética , Glucosa/metabolismo , Luz , Transcriptoma , Chlorella/metabolismo , Genes de Plantas , ARN de Planta/genética
13.
Plant Direct ; 4(9): e00265, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005856

RESUMEN

Lignin is a key secondary cell wall chemical constituent, and is both a barrier to biomass utilization and a potential source of bioproducts. The Arabidopsis transcription factors MYB58 and MYB63 have been shown to upregulate gene expression of the general phenylpropanoid and monolignol biosynthetic pathways. The overexpression of these genes also results in dwarfism. The vascular integrity, soluble phenolic profiles, cell wall lignin, and transcriptomes associated with these MYB-overexpressing lines were characterized. Plants with high expression of MYB58 and MYB63 had increased ectopic lignin and the xylem vessels were regular and open, suggesting that the stunted growth is not associated with loss of vascular conductivity. MYB58 and MYB63 overexpression lines had characteristic soluble phenolic profiles with large amounts of monolignol glucosides and sinapoyl esters, but decreased flavonoids. Because loss of function lac4 lac17 mutants also accumulate monolignol glucosides, we hypothesized that LACCASE overexpression might decrease monolignol glucoside levels in the MYB-overexpressing plant lines. When laccases related to lignification (LAC4 or LAC17) were co-overexpressed with MYB63 or MYB58, the dwarf phenotype was rescued. Moreover, the overexpression of either LAC4 or LAC17 led to wild-type monolignol glucoside levels, as well as wild-type lignin levels in the rescued plants. Transcriptomes of the rescued double MYB63-OX/LAC17-OX overexpression lines showed elevated, but attenuated, expression of the MYB63 gene itself and the direct transcriptional targets of MYB63. Contrasting the dwarfism from overabundant monolignol production with dwarfism from lignin mutants provides insight into some of the proposed mechanisms of lignin modification-induced dwarfism.

14.
Plant Mol Biol ; 103(4-5): 425-441, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32266646

RESUMEN

KEY MESSAGE: Aggregation across multiple networks highlights robust co-expression interactions and improves the functional connectivity of grapevine gene co-expression networks. In recent years, the rapid accumulation of transcriptome datasets from diverse experimental conditions has enabled the widespread use of gene co-expression network (GCN) analysis in plants. In grapevine, GCN analysis has shown great promise for gene function prediction, however, measurable progress is currently lacking. Using accumulated microarray datasets from the grapevine whole-genome array (33 experiments, 1359 samples), we explored how meta-analysis through aggregation influences the functional connectivity (performance) of derived networks using guilt-by-association neighbor voting. Two annotation schemes, i.e. MapMan BIN and Pfam, at two sparsity thresholds, i.e. top 100 (stringent) and 300 (relaxed) ranked genes were evaluated. We observed that aggregating across multiple networks improves performance dramatically, with the aggregate outperforming the majority of functional terms across individual networks. Network sparsity and size (i.e. the number of samples and aggregates) were key factors influencing performance while the choice of annotation scheme had little. Systematic comparison with various state-of-the-art microarray and RNA-seq networks was also performed, however, none outperformed the aggregate microarray network despite having good predictive performance. Repeating these series of tests using a functional enrichment-based performance metric also showed remarkably consistent findings with guilt-by-association neighbor voting. To demonstrate its functionality, we explore the function and transcriptional regulation of grapevine EXPANSIN genes. We envisage that network aggregation will offer new and unique opportunities for gene function prediction in future grapevine functional genomics studies. To this end, we make the aggregate networks and associated metadata publicly available at VTC-Agg (https://sites.google.com/view/vtc-agg).


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta/genética , Fenotipo , Proteínas de Plantas/genética , Vitis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq , Transcriptoma
15.
Planta ; 251(3): 60, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32030477

RESUMEN

MAIN CONCLUSION: The phosphorylation status of MYB75 at T-131 affects protein stability, flavonoid profiles, and patterns of gene expression. The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is known to act as a positive transcriptional regulator of genes required for flavonoid and anthocyanin biosynthesis. MYB75 was also shown to negatively regulate lignin and other secondary cell wall biosynthetic genes (Bhargava et al. in Plant Physiol 154(3):1428-1438, 2010). While transcriptional regulation of MYB75 has been described in numerous publications, little is known about post-translational control of MYB75 protein function. In a recent publication, light-induced activation of a MAP kinase (MPK4, AT4G01370) in Arabidopsis was reported to lead to MYB75 phosphorylation at two canonical MPK target sites, threonines, T-126 and T-131. This double phosphorylation event positively influenced MYB75 protein stability (Li et al. in Plant Cell 28(11):2866-2883, 2016). We have examined this phenomenon through use of phosphomutant forms of MYB75 and found that MYB75 is phosphorylated primarily at T-131, and that the phosphorylation of MYB75 recombinant protein in vitro can be catalyzed by multiple MAP kinases, including MPK3 (AT3G45640), MPK6 (AT2G43790), MPK4 and MPK11 (AT1G01560). We also demonstrate that MYB75 can bind to a large number of Arabidopsis MPK's in vitro, suggesting it could be a target of multiple signalling pathways. The impact of MYB75 phosphorylation at T-131 on the function of this transcription factor, in terms of localization, stability, and protein-protein interactions with known binding partners was examined in transgenic lines expressing phosphomimic and phosphonull versions of MYB75, to capture the behaviour of permanently phosphorylated and unphosphorylated MYB75 protein, respectively. In addition, we describe how ectopic over-expression of different phosphovariant forms of MYB75 (MYB75WT, MYB75T131A, and MYB75T131E) affects flavonoid biochemical profiles and global changes of gene expression in the corresponding transgenic Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Antocianinas/biosíntesis , Antocianinas/química , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Luz , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de la radiación , Sacarosa/farmacología , Factores de Transcripción/genética
16.
J Exp Bot ; 71(10): 3126-3141, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31985780

RESUMEN

Drought events are a major challenge for many horticultural crops, including grapes, which are often cultivated in dry and warm climates. It is not understood how the cuticle contributes to the grape berry response to water deficit (WD); furthermore, the cuticular waxes and the related biosynthetic pathways are poorly characterized in this fruit. In this study, we identified candidate wax-related genes from the grapevine genome by phylogenetic and transcriptomic analyses. Developmental and stress response expression patterns of these candidates were characterized across pre-existing RNA sequencing data sets and confirmed a high responsiveness of the pathway to environmental stresses. We then characterized the developmental and WD-induced changes in berry cuticular wax composition, and quantified differences in berry transpiration. Cuticular aliphatic wax content was modulated during development and an increase was observed under WD, with wax esters being strongly up-regulated. These compositional changes were related to up-regulated candidate genes of the aliphatic wax biosynthetic pathway, including CER10, CER2, CER3, CER1, CER4, and WSD1. The effect of WD on berry transpiration was not significant. This study indicates that changes in cuticular wax amount and composition are part of the metabolic response of the grape berry to WD, but these changes do not reduce berry transpiration.


Asunto(s)
Vitis , Sequías , Frutas/genética , Filogenia , Vitis/genética , Ceras
17.
Plant J ; 101(1): 37-56, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469934

RESUMEN

The cannabis leaf is iconic, but it is the flowers of cannabis that are consumed for the psychoactive and medicinal effects of their specialized metabolites. Cannabinoid metabolites, together with terpenes, are produced in glandular trichomes. Superficially, stalked and sessile trichomes in cannabis only differ in size and whether they have a stalk. The objectives of this study were: to define each trichome type using patterns of autofluorescence and secretory cell numbers, to test the hypothesis that stalked trichomes develop from sessile-like precursors, and to test whether metabolic specialization occurs in cannabis glandular trichomes. A two-photon microscopy technique using glandular trichome intrinsic autofluorescence was developed which demonstrated that stalked glandular trichomes possessed blue autofluorescence correlated with high cannabinoid levels. These stalked trichomes had 12-16 secretory disc cells and strongly monoterpene-dominant terpene profiles. In contrast, sessile trichomes on mature flowers and vegetative leaves possessed red-shifted autofluorescence, eight secretory disc cells and less monoterpene-dominant terpene profiles. Moreover, intrinsic autofluorescence patterns and disc cell numbers supported a developmental model where stalked trichomes develop from apparently sessile trichomes. Transcriptomes of isolated floral trichomes revealed strong expression of cannabinoid and terpene biosynthetic genes, as well as uncharacterized genes highly co-expressed with CBDA synthase. Identification and characterization of two previously unknown and highly expressed monoterpene synthases highlighted the metabolic specialization of stalked trichomes for monoterpene production. These unique properties and highly expressed genes of cannabis trichomes determine the medicinal, psychoactive and sensory properties of cannabis products.


Asunto(s)
Cannabis/metabolismo , Flores/metabolismo , Tricomas/genética , Cannabis/genética , Flores/genética , Microscopía Fluorescente , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Terpenos/metabolismo
18.
Plant J ; 99(5): 988-1002, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063661

RESUMEN

Cold stress is a major limiting factor in grape (Vitis) productivity. In this study, we characterized a cold-responsive ethylene response factor (ERF) transcription factor, VaERF092, from Amur grape (Vitis amurensis). VaERF092 expression was induced by both low temperatures and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC), but was suppressed by treatment with the ethylene inhibitor aminoethoxyvinylglycine (AVG) under cold conditions. Ectopic expression of VaERF092 in Arabidopsis thaliana enhanced cold tolerance. Co-expression network analysis of V. vinifera genes indicated that WRKY33 might be a downstream target of VaERF092. This hypothesis was supported by the fact that VaWRKY33 was expressed temporally after VaERF092 expression and could also be induced by cold and ACC, and inhibited by AVG. Yeast one-hybrid, transient ß-glucuronidase (GUS) and dual-luciferase reporter assays provided evidence for an interaction between VaERF092 and a GCC-box element in the VaWRKY33 promoter. In addition, heterologous overexpression of VaWRKY33 in A. thaliana resulted in enhanced cold tolerance. VaERF092- and VaWRKY33 overexpressing grape calli showed lower low-temperature exothermic values than the empty vector (EV) calli, indicating enhanced tolerance to cold. Together, these results indicated that VaERF092 regulates VaWRKY33 through binding to its promoter GCC-box, leading to enhanced cold stress tolerance.


Asunto(s)
Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Vitis/metabolismo , Aclimatación , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Frío , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/análogos & derivados , Glicina/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia , Estrés Fisiológico , Factores de Transcripción/genética , Transcriptoma , Vitis/genética
19.
Ann Bot ; 123(6): 1053-1066, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-30789664

RESUMEN

BACKGROUND AND AIMS: The processes of gene duplication, followed by divergence and selection, probably underpin the evolution of floral volatiles crucial to plant-insect interactions. The Australian sexually deceptive Chiloglottis orchids use a class of 2,5-dialkylcyclohexan-1,3-dione volatiles or 'chiloglottones' to attract specific male wasp pollinators. Here, we explore the expression and evolution of fatty acid pathway genes implicated in chiloglottone biosynthesis. METHODS: Both Chiloglottis seminuda and C. trapeziformis produce chiloglottone 1, but only the phylogenetically distinct C. seminuda produces this volatile from both the labellum callus and glandular sepal tips. Transcriptome sequencing and tissue-specific contrasts of the active and non-active floral tissues was performed. The effects of the fatty acid synthase inhibitor cerulenin on chiloglottone production were tested. Patterns of selection and gene evolution were investigated for fatty acid pathway genes. KEY RESULTS: Tissue-specific differential expression of fatty acid pathway transcripts was evident between active and non-active floral tissues. Cerulenin significantly inhibits chiloglottone 1 production in the active tissues of C. seminuda. Phylogenetic analysis of plant ß-ketoacyl synthase I (KASI), a protein involved in fatty acid biosynthesis, revealed two distinct clades, one of which is unique to the Orchidaceae (KASI-2B). Selection analysis indicated a strong signal of positive selection at the split of KASI-2B followed by relaxed purifying selection in the Chiloglottis clade. CONCLUSIONS: By capitalizing on a phylogenetically distinct Chiloglottis from earlier studies, we show that the transcriptional and biochemical dynamics linked to chiloglottone biosynthesis in active tissues are conserved across Chiloglottis. A combination of tissue-specific expression and relaxed purifying selection operating at specific fatty acid pathway genes may hold the key to the evolution of chiloglottones.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Orchidaceae , Animales , Australia , Flores , Masculino , Filogenia , Polinización
20.
BMC Plant Biol ; 19(1): 69, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744556

RESUMEN

BACKGROUND: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest. RESULTS: The vines mediated water stress gradually and involving multiple strategies: osmotic adjustment, transcript-metabolite alteration and leaf shedding. Initially stomatal conductance and leaf water potential showed a steep decrease together with the induction of stress related metabolism, e.g. up-regulation of proline and GABA metabolism and stress related sugars, and the down-regulation of developmental processes. Later, progressive soil drying was associated with an incremental contribution of Ca2+ and sucrose to the osmotic adjustment concomitant with the initiation of leaf shedding. Last, towards harvest under progressive stress conditions following leaf shedding, incremental changes in leaf water potential were measured, while the magnitude of perturbation in leaf metabolism lessened. CONCLUSIONS: The data present evidence that over time grapevine acclimation to water stress diversifies in temporal responses encompassing the alteration of central metabolism and gene expression, osmotic adjustments and reduction in leaf area. Together these processes mitigate leaf water stress and aid in maintaining the berry-ripening program.


Asunto(s)
Hojas de la Planta/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Ósmosis , Prolina/metabolismo , Agua/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...